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Sketch of this lesson

Issue at stake:

I short overview of different types of methods for vertex
clustering

I only simple clustering (although some methods for
overlapping clustering, clustering according to vertex/edge
attributes, clustering of bipartite graphs... also exist)
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Notations for this class

Notations

In the following, a graph G = (V ,E,W) with:
I V : set of vertices {x1, . . . , xn};
I E: set of (undirected) edges. m = |E |;
I W : weights on edges s.t. Wij ≥ 0, Wij = Wji and Wii = 0 (also

called, adjacency matrix).

If needed, attributes for the nodes will be denoted by fj(xi) (jth
attribute for node i) and attributes for the edges (other than the
weights) by gj(xi , xi′) (jth attribute for the edge (xi , xi′)).
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A short overview of vertex clustering

Purpose: Find communities or modules (i.e., groups of vertices) st
vertices inside the community are strongly connected whereas
vertices between two communities are slightly connected.

Some approaches to perform such task:
I optimizing a given criterion (e.g., modularity maximization)
I spectral clustering
I model based clustering
I ... (see [Fortunato and Barthélémy, 2007, Schaeffer, 2007,

Brohée and van Helden, 2006])
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Outline

Modularity optimization

Spectral clustering

Model based clustering
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Clustering based on criterion optimization
I “Cut” criteria: Given a number of clusters, K , find the partition

of V , C1, . . . , CK such that it solves the mincut problem, i.e., it
minimizes

cut(C1, . . . ,CK ) =
1
2

K∑
k=1

∑
xi∈Ck , xj<Ck

Wij

I “Modularity” criterion [Newman and Girvan, 2004]: Given a
number of clusters, K , find the partition of V , C1, . . . , CK

which maximizes

Q(C1, . . . ,Ck ) =
1

2m

K∑
k=1

∑
xi , xj∈Ck

(Wij − Pij)

with Pij : weight of a “null model” (graph with the same degree
distribution but no preferential attachment): Pij =

didj
2m with

di =
1
2
∑

j,i Wij .
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Interpretation of the modularity
A good clustering should maximize the modularity:
I Q ↗ when (xi , xj) are in the same cluster and Wij � Pij

I Q ↘ when (xi , xj) are in two different clusters and Wij � Pij

(m = 20)

Pij = 7.5

Wij = 5⇒ Wij − Pij = −2.5
di = 15 dj = 20

i and j in the same cluster decreases the modularity

I Modularity
I helps separate hubs (, spectral clustering or min cut criterion);

I is not an increasing function of the number of clusters: useful
to choose the relevant number of clusters (with a grid search:
several values are tested, the clustering with the highest
modularity is kept)
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Advantages and drawbacks

I mincut is not adapted to vertex clustering in practice (clusters
with isolated vertices)

I the other three methods are NP hard to solve...

I the modularity takes into account skewness in degree
distribution by correcting the importance of a vertex by its
degree: it is often more adapted to real life graphs

I [Fortunato and Barthélémy, 2007] showed that modularity has a
resolution issue. [Bickel and Chen, 2009] gave conditions for
consistency of the clusters obtained by modularity
optimization in Stochastic Block Models (SBM).

Remark: Relaxation of RatioCut problem and NCut problem gives
spectral clustering. Modularity optimization is often solved by
approximation methods.
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A short description of approximation methods for
modularity optimization

I simple greedy algorithms ([Newman, 2004] and
[Clauset et al., 2004] for a fast version): hierarchical clustering
which merges pairs of vertices with the highest contribution to
modularity

I multi-level greedy algorithms ([Blondel et al., 2008], also known
as “Louvain algorithm” and [Noack and Rotta, 2009] for an
improved version): hierarchical approach in which vertices are
sometimes re-assigned to a different community in a greedy
way

I simulated annealing ([Reichardt and Bornholdt, 2006] uses a
spin-glass model which, in some cases, is equivalent to
modularity maximization)

...to be compared (when usable) with the exact optimization (only
useable for small graphs).
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Example

Computational time needed by the different solution to find a
clustering for NVV network:

time
hierarchical 0.003

multilevel 0.002
annealing 1.266
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Computational time (greedy approaches)
Difference (computational time) between the first two approaches
(100 evaluations):

## Coordinate system already present. Adding new
coordinate system, which will replace the existing
one.

hierarchical

multilevel

500 700 1000

Time [microseconds]
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Accuracy of the clustering
hierarchical − 0.567 − 7 multilevel − 0.567 − 7

simulated annealing − 0.5628 − 10
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Outline

Modularity optimization

Spectral clustering

Model based clustering
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Relation between RatioCut and Laplacian
[von Luxburg, 2007] shows that minimizing

RatioCut(C1, C2) =
1
2

2∑
k=1

∑
xi∈Ck , xj<Ck

Wij

|Ck |

is equivalent to the following constrained problem:

min
C1, ,C2

v>Lv st v ⊥ 1n and ‖v‖ =
√

n

for v the vector of Rn obtained from the partition by:

vi =

{ √
(|C2|)/|C1| if vi ∈ C1

−
√
|C1|/(|C2|) otherwise.

and L is the Laplacian of the graph, n × n-matrix with entries:

Lij =

{
−Wij if i , j
di =

∑
j,i Wij otherwise

.
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... and more remarks

I this is a discrete (since v can only have two values) and
NP-hard problem;

I the same relation holds between NCut problem and
normalized Laplacian D−1/2LD−1/2 is which
D = Diag(d1, . . . , dn);

I a generalization of these results exist for K > 2.
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Some properties of the Laplacian
Relations with the graph structure:

1

2

3

4

5

has a null space spanned by the vectors


1
1
1
0
0


and


0
0
0
1
1


.

Random walk point of view: If we consider a random walk on the
graph with probability to jump from one node to the other equal to
Wij
di

then the average time to go from one node to another
(commute time) is given by L+ [Fouss et al., 2007].

Nathalie Vialaneix | Graph mining 16/26



Some properties of the Laplacian
Relations with the graph structure: the vector 1n spans the null
space for connected graphs.

Random walk point of view: If we consider a random walk on the
graph with probability to jump from one node to the other equal to
Wij
di

then the average time to go from one node to another
(commute time) is given by L+ [Fouss et al., 2007].

Nathalie Vialaneix | Graph mining 16/26



Some properties of the Laplacian
Relations with the graph structure:

Random walk point of view: If we consider a random walk on the
graph with probability to jump from one node to the other equal to
Wij
di

then NCut(A1,A2) is interpreted as the probability to go from C1

to C2 or from C2 to C1.

the average time to go from one node to
another (commute time) is given by L+ [Fouss et al., 2007].
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Spectral clustering: relaxing the constrains

K has to be given. Solving minC1, ,C2 Tr(U>LU) for a K × n matrix U
st U>U = 1:

1. Compute the first K eigenvectors of L , u1, . . . , uK and write
U = (u1, . . . ,uK ) (a n × K matrix).

2. For i = 1, . . . , n, denote ui ∈ R
K the i-th row of U. Cluster the

points (ui)i=1,...,n using a clustering algorithm (e.g., k-means).
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Spectral clustering in practice

For NVV network, computation time is equal to 0.039 (between the
greedy approaches for modularity optimization and simulated
annealing for modularity optimization).
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Accuracy of the clustering
spectral clustering − 0.2333 − 6 multilevel − 0.567 − 7

Modularity is smaller (as expected) and clusters tend to be more
unbalanced. An empirical comparison between the performance of
spectral clustering and modularity optimization is provided in
[Bickel and Chen, 2009]. [Lei and Rinaldo, 2015] gives conditions for the
consistency of spectral clustering in stochastic block models.
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Outline

Modularity optimization

Spectral clustering

Model based clustering
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A mixture model for networks
[Snijders and Nowicki, 1997]: The observed network G is supposed to
be the realization of some random graph model in which vertices
are organized in groups.

description of the model

I vertices xi belong to an unknow class in {C1, ...,CK } (K is
given)⇒ latent (unobserved) variables

Zi ∼ M(1, α = (α1, . . . , αK ))

in which αk is the probability that xi belongs to Ck

I given the class membership, the probabilities to have an edge
between xi and xj are all independant and obtained by:

typically, the Bernouilli distribution with probability πkk ′ with

πkk ′ =

{
p1 if k = k ′

p0 if k , k ′
for p1 > p0.
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Basic principle for using SBM

1. assignments of vertices to groups;

2. parameter estimation ((αk )k and (πkk ′)k ,k ′);

3. estimation of the number of groups.

Estimation is made by Bayesian or frequentist approaches and
Variational EM (see e.g., [Daudin et al., 2008] for the more
computationally efficient frequentist approach). Number of nodes
can be chosen using ICL [Biernacki et al., 2000].

All this is implemented in the package blockmodels [Léger, 2016].
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SBM in practice

For NVV network, the computational time of SBM clustering is
2.104. The number of clusters found by the method is 6.
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Accuracy of the clustering

SBM clustering − 0.4037 − 6 multilevel − 0.567 − 7

Modularity is smaller (as expected) but groups can be interpreted
by being sets of vertices with similar connecting patterns.

Nathalie Vialaneix | Graph mining 24/26



Comparing clustering
Various metrics ((di)similarities) exist to compare clustering,
among which:
I Rand Index [Rand, 1971]

number of agreements between the two clusterings
n(n − 1)/2

I Normalized Mutual Information [Danon et al., 2005]

K1∑
k=1

K2∑
k ′=1

nkk ′

n
log

 nkk ′n
n1

k n2
k ′


in which Kj is the number of clusters in clustering j, nj

k is the
number of vertices classified into cluster k for clustering j and
nkk ′ is the number of vertices classified into cluster k for
clustering 1 and cluster k ′ for clustering 2. The similarity is
normalized so that it is between 0 and 1 (1 is for a perfect
match).
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How do clusterings relate?

Method:

1. compute a dissimilarity based on Rand index or NMI
(1 − value)

2. perform clustering (of the results of vertex clustering) using
hierarchical clustering hclust
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