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Sketch of this lesson

Issue at stake:

> short overview of different types of methods for vertex
clustering

» only simple clustering (although some methods for
overlapping clustering, clustering according to vertex/edge
attributes, clustering of bipartite graphs... also exist)
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Notations for this class

In the following, a graph G = (V, E, W) with:
> V: set of vertices {x1, ..., Xpn};
> E: set of (undirected) edges. m = |E|;
> W: weights on edges s.t. W > 0, W;; = Wj; and W;; = 0 (also
called, adjacency matrix).
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Notations for this class

In the following, a graph G = (V, E, W) with:
> V: set of vertices {x1, ..., Xpn};
> E: set of (undirected) edges. m = |E|;
> W: weights on edges s.t. W > 0, W;; = Wj; and W;; = 0 (also
called, adjacency matrix).

If needed, attributes for the nodes will be denoted by f;(x;) (jth
attribute for node i) and attributes for the edges (other than the
weights) by g;(xi, x) (jth attribute for the edge (x;, x)).
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A short overview of vertex clustering

Purpose: Find communities or modules (i.e., groups of vertices) st
vertices inside the community are strongly connected whereas
vertices between two communities are slightly connected.
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A short overview of vertex clustering

Purpose: Find communities or modules (i.e., groups of vertices) st
vertices inside the community are strongly connected whereas
vertices between two communities are slightly connected.

Some approaches to perform such task:
» optimizing a given criterion (e.g., modularity maximization)
» spectral clustering
» model based clustering

> ... (see [Fortunato and Barthélémy, 2007, Schaeffer, 2007,
Brohée and van Helden, 2006])
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Outline

Modularity optimization
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Clustering based on criterion optimization

> “Cut” criteria: Given a number of clusters, K, find the partition
of V, Cq, ..., Ck such that it solves the mincut problem, i.e., it

minimizes
1 K
Cut(C1,...,CK):§Z Z Wi
k=1 xjeCx, X;#Cx
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Clustering based on criterion optimization

> “Cut” criteria: Given a number of clusters, K, find the partition
of V, Cy, ..., Ck such that it solves the mincut problem, i.e., it

minimizes
1 K
Cut(C1,...,CK):§Z Z Wi
k=1 xjeCx, X;#Cx

Problem: The mincut problem often only separates individual
vertices from the rest of the graph.
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Clustering based on criterion optimization

> “Cut” criteria: Given a number of clusters, K, find the partition
of V, Cy, ..., Ck such that it solves the “RatioCut” problem,
i.e., it minimizes

RatioCut(C1,...,Ck) = % ZK: Z had)

k=1 xi€Cic, x#Cx ICxl
(forces larger communities than the mincut problem).
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Clustering based on criterion optimization

> “Cut” criteria: Given a number of clusters, K, find the partition
of V,Cy, ..., Ck such that it solves the “NCut” problem, i.e.,
it minimizes
K
1 Wi
NCut(C1,....Ck) =5 > ’

2= Xi€C, X#Chk Vol(Ck)

in which Vol(Ck) = Xx. xec, Wi (also forces larger
communities than the mincut problem).
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Clustering based on criterion optimization
> “Cut” criteria

> “Modularity” criterion [Newman and Girvan, 2004]: Given a
number of clusters, K, find the partition of V, Cy, ..., Ck
which maximizes

Q(Cy,...,Ck) 2mZ Z (W - Py)

=1 Xj, XjeCk
with Pji: weight of a “null model” (graph with the same degree

distribution but no preferential attachment): Pj = % with
di = %Z#i Wi.
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Interpretation of the modularity
A good clustering should maximize the modularity:
> Q / when (x;, x;) are in the same cluster and Wj; > Pj

> Q ™\, when (x;, x;) are in two different clusters and Wj; > P;

P;j=75
d =15 - dj = 20

VV,'/'=5=>VV,'}'—P,'/':—2.5

i and j in the same cluster decreases the modularity
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Interpretation of the modularity
A good clustering should maximize the modularity:
> Q / when (x;, x;) are in the same cluster and Wj; > Pj

> Q ™\, when (x;, x;) are in two different clusters and Wj; > P;

(m = 20)

Pj = 0.05

VV,‘]':5$VV,']'—PU:4.95

i and j in the same cluster increases the modularity
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Interpretation of the modularity
A good clustering should maximize the modularity:
> Q / when (x;, x;) are in the same cluster and Wj; > Pj

> Q ™\, when (x;, x;) are in two different clusters and Wj; > P;

> Modularity
> helps separate hubs (# spectral clustering or min cut criterion);

» is not an increasing function of the number of clusters: useful
to choose the relevant number of clusters (with a grid search:
several values are tested, the clustering with the highest
modularity is kept)
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Advantages and drawbacks

> mincut is not adapted to vertex clustering in practice (clusters
with isolated vertices)

» the other three methods are NP hard to solve...
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Advantages and drawbacks

> mincut is not adapted to vertex clustering in practice (clusters
with isolated vertices)

» the other three methods are NP hard to solve...

> the modularity takes into account skewness in degree
distribution by correcting the importance of a vertex by its
degree: it is often more adapted to real life graphs

> [Fortunato and Barthélémy, 2007] showed that modularity has a
resolution issue. [Bickel and Chen, 2009] gave conditions for
consistency of the clusters obtained by modularity
optimization in Stochastic Block Models (SBM).

w
¢y
z Nathalie Vialaneix | Graph mining m IN RA@ 8/26



Advantages and drawbacks

> mincut is not adapted to vertex clustering in practice (clusters
with isolated vertices)

» the other three methods are NP hard to solve...

> the modularity takes into account skewness in degree
distribution by correcting the importance of a vertex by its
degree: it is often more adapted to real life graphs

> [Fortunato and Barthélémy, 2007] showed that modularity has a
resolution issue. [Bickel and Chen, 2009] gave conditions for
consistency of the clusters obtained by modularity
optimization in Stochastic Block Models (SBM).

Remark: Relaxation of RatioCut problem and NCut problem gives
spectral clustering. Modularity optimization is often solved by
approximation methods.
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A short description of approximation methods for
modularity optimization

» simple greedy algorithms ([Newman, 2004] and
[Clauset et al., 2004] for a fast version): hierarchical clustering
which merges pairs of vertices with the highest contribution to
modularity
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A short description of approximation methods for
modularity optimization

» simple greedy algorithms ([Newman, 2004] and
[Clauset et al., 2004] for a fast version): hierarchical clustering
which merges pairs of vertices with the highest contribution to
modularity

» multi-level greedy algorithms ([Blondel et al., 2008], also known
as “Louvain algorithm” and [Noack and Rotta, 2009] for an
improved version): hierarchical approach in which vertices are
sometimes re-assigned to a different community in a greedy
way
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A short description of approximation methods for
modularity optimization

» simple greedy algorithms ([Newman, 2004] and
[Clauset et al., 2004] for a fast version): hierarchical clustering
which merges pairs of vertices with the highest contribution to
modularity

» multi-level greedy algorithms ([Blondel et al., 2008], also known
as “Louvain algorithm” and [Noack and Rotta, 2009] for an
improved version): hierarchical approach in which vertices are
sometimes re-assigned to a different community in a greedy
way

> simulated annealing ([Reichardt and Bornholdt, 2006] uses a
spin-glass model which, in some cases, is equivalent to
modularity maximization)
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A short description of approximation methods for
modularity optimization

» simple greedy algorithms ([Newman, 2004] and
[Clauset et al., 2004] for a fast version): hierarchical clustering
which merges pairs of vertices with the highest contribution to
modularity

» multi-level greedy algorithms ([Blondel et al., 2008], also known
as “Louvain algorithm” and [Noack and Rotta, 2009] for an
improved version): hierarchical approach in which vertices are
sometimes re-assigned to a different community in a greedy
way

> simulated annealing ([Reichardt and Bornholdt, 2006] uses a
spin-glass model which, in some cases, is equivalent to
modularity maximization)

...to be compared (when usable) with the exact optimization (only
useable for small graphs).
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Example

Computational time needed by the different solution to find a
clustering for NVV network:

time

hierarchical 0.003
multilevel  0.002
annealing 1.266
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Computational time (greedy approaches)
Difference (computational time) between the first two approaches
(100 evaluations):

## Coordinate system already present. Adding new
coordinate system, which will replace the existing
one.

multilevel =

500 700 1000
Time [microseconds]
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Accuracy of the clustering

hierarchical - 0.567 - 7 multilevel - 0.567 — 7

simulated annealing — 0.5628 - 10
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Outline

Spectral clustering
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Relation between RatioCut and Laplacian
[von Luxburg, 2007] shows that minimizing

Wi
RatioCut(C1, C2)
( 1 2 2 Z XECZ |Ck|
i€Ck, Xj#Ck

is equivalent to the following constrained problem:

min v'Lvstv L 1,and|v||= Vn
C1,,C2

for v the vector of R obtained from the partition by:

Vi — (IC2l)/IC1]  ifvieCy
’ IC11/(IC2]) otherwise.

and L is the Laplacian of the graph, n x n-matrix with entries:

Lo — -Wj ifi#]j
77\ di = X Wy otherwise
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... and more remarks

> this is a discrete (since v can only have two values) and
NP-hard problem;
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. and more remarks

> this is a discrete (since v can only have two values) and
NP-hard problem;

> the same relation holds between NCut problem and
normalized Laplacian D~'/2LD~"/2 is which
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. and more remarks

> this is a discrete (since v can only have two values) and

NP-hard problem;

> the same relation holds between NCut problem and
normalized Laplacian D~'/2LD~"/2 is which

> a generalization of these results exist for K > 2.

w
Nathalie Vialaneix | Graph mining m I N RA@ 15/26



Some properties of the Laplacian
Relations with the graph structure:

©)
@
@
®
@
1 0
1 0
has a null space spanned by the vectors| 1 |and| 0
0 1
0 1
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Some properties of the Laplacian
Relations with the graph structure: the vector 1, spans the null
space for connected graphs.
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Some properties of the Laplacian
Relations with the graph structure:

Random walk point of view: If we consider a random walk on the
graph with probability to jump from one node to the other equal to
% then NCut(A1, A) is interpreted as the probability to go from Cy
to Co or from C> to Cy.
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Some properties of the Laplacian
Relations with the graph structure:

Random walk point of view: If we consider a random walk on the
graph with probability to jump from one node to the other equal to
W .

T then the average time to go from one node to another
(commute time) is given by L™ [Fouss et al., 2007].
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Spectral clustering: relaxing the constrains

K has to be given. Solving ming,. ¢, Tr(UTLU) for a K x n matrix U
stUT™U =1:

1. Compute the first K eigenvectors of L, u', ..., uX and write
U=(u',...,uX) (a nx K matrix).
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Spectral clustering: relaxing the constrains

K has to be given. Solving ming,. ¢, Tr(UTLU) for a K x n matrix U
stUT™U =1:

1. Compute the first K eigenvectors of L, u', ..., uX and write
U=(u',...,uX) (a nx K matrix).

2. Fori=1,...,n, denote u; € RX the i-th row of U. Cluster the
points (u;)i=1...n Using a clustering algorithm (e.g., k-means).

.....
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Spectral clustering in practice

For NVV network, computation time is equal to 0.039 (between the
greedy approaches for modularity optimization and simulated
annealing for modularity optimization).
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Accuracy of the clustering

spectral clustering — 0.2333 - 6 multilevel - 0.567 — 7
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Modularity is smaller (as expected) and clusters tend to be more
unbalanced. An empirical comparison between the performance of
spectral clustering and modularity optimization is provided in
[Bickel and Chen, 2009]. [Lei and Rinaldo, 2015] gives conditions for the
consistency of spectral clustering in stochastic block models.
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Outline

Model based clustering
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A mixture model for networks
[Snijders and Nowicki, 1997]: The observed network G is supposed to
be the realization of some random graph model in which vertices
are organized in groups.

description of the model

> vertices x; belong to an unknow class in {C1, ...,Ck} (K is
given) = latent (unobserved) variables

Zi~M1,a=(a1,...,ak))

in which ay is the probability that x; belongs to Ck
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A mixture model for networks
[Snijders and Nowicki, 1997]: The observed network G is supposed to
be the realization of some random graph model in which vertices
are organized in groups.

description of the model

> vertices x; belong to an unknow class in {C1, ...,Ck} (K is
given) = latent (unobserved) variables

Zi~M1,a=(a1,...,ak))

in which ay is the probability that x; belongs to Ck

> given the class membership, the probabilities to have an edge
between x; and x; are all independant and obtained by:

for a given distribution £
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A mixture model for networks
[Snijders and Nowicki, 1997]: The observed network G is supposed to
be the realization of some random graph model in which vertices
are organized in groups.

description of the model

> vertices x; belong to an unknow class in {C1, ...,Ck} (K is
given) = latent (unobserved) variables

Zi~M1,a=(a1,...,ak))

in which ay is the probability that x; belongs to Ck

> given the class membership, the probabilities to have an edge
between x; and x; are all independant and obtained by:
typically, the Bernouilli distribution with probability 7y with

_ P k=K for p; >
gk = po ifk %K’ p1 > po-
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Basic principle for using SBM

1. assignments of vertices to groups;
2. parameter estimation ((ak )k and (7 )k.k');
3. estimation of the number of groups.
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Basic principle for using SBM

1. assignments of vertices to groups;
2. parameter estimation ((ak )k and (7 )k.k');
3. estimation of the number of groups.

Estimation is made by Bayesian or frequentist approaches and
Variational EM (see e.g., [Daudin et al., 2008] for the more
computationally efficient frequentist approach). Number of nodes
can be chosen using ICL [Biernacki et al., 2000].
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Basic principle for using SBM

1. assignments of vertices to groups;
2. parameter estimation ((ak )k and (7 )k.k');
3. estimation of the number of groups.

Estimation is made by Bayesian or frequentist approaches and
Variational EM (see e.g., [Daudin et al., 2008] for the more
computationally efficient frequentist approach). Number of nodes
can be chosen using ICL [Biernacki et al., 2000].

All this is implemented in the package blockmodels [Léger, 2016].
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SBM in practice

For NVV network, the computational time of SBM clustering is
2.104. The number of clusters found by the method is 6.
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Accuracy of the clustering

SBM clustering — 0.4037 - 6 multilevel - 0.567 - 7
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Modularity is smaller (as expected) but groups can be interpreted
by being sets of vertices with similar connecting patterns.
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Comparing clustering
Various metrics ((di)similarities) exist to compare clustering,
among which:

» Rand Index [Rand, 1971]
number of agreements between the two clusterings
n(n-1)/2
» Normalized Mutual Information [Danon et al., 2005]

K Ka
Z Z P og | 7
nn2

=1k'= k' 'k’

in which Kj is the number of clusters in clustering j, nf( is the
number of vertices classified into cluster k for clustering j and
Nk is the number of vertices classified into cluster k for
clustering 1 and cluster k’ for clustering 2. The similarity is
normalized so that it is between 0 and 1 (1 is for a perfect
match).
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How do clusterings relate?

Method:

1. compute a dissimilarity based on Rand index or NMI
(1 —value)

2. perform clustering (of the results of vertex clustering) using
hierarchical clustering hclust
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How do clusterings relate?

Rand index NMI
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