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Joséphine MARTIN

2023

Supervisors: Marie-Laure Martin and Nathalie Vialaneix



Contents

I Principal Component Analysis 3

1 Introduction to PCA 3
1.1 Notation and statistical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Global inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Projected data inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Principal axes and principal components . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 Principal axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Principal components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Graphs 8
2.1 Individuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Choice of the dimension 11

4 Application 11

II Kernel Principal Component Analysis 13

1 Reproducing Kernel Hilbert spaces 14
1.1 Some reminders on Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 RKHS and kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Kernel trick 20

3 From PCA to Kernel PCA 23

4 Application 30

Conclusion 32

1



Abstract
My internship is part of the INRAE project “PeerSim”. The general motivation of this internship is
twofold. The first one is to study the impact of combined stresses, like CO2 rate and temperature, on
the plant Arabidopsis thaliana. The second one is to investigate the impact of the sample size on the
biological interpretation on statistical results. This second point aims to identify a minimum number of
experimental replicates needed to properly estimate the impact of stresses.

The internship is organized into two parts, the theoretical part and the practical part. The theoretical
part justifies the tools used in the practical part.

This report investigates the theory of kernel methods for exploratory analysis. The first section deals
with the Principal Component Analysis (PCA). Then, the second section focuses on reproducing kernel
Hilbert space which allows the extension of PCA to non-numerical data comparison. The extension of
PCA is called Kernel PCA. In the context of the “PeerSim” project, Kernel PCA offers the advantages
of comparing non-numerical data, especially comparing gene networks.
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Part I

Principal Component Analysis

1 Introduction to PCA

Principal Component Analysis (PCA) is a mathematical method used in exploratory analyses. The goal
is to analyse p variables on a population of n individuals in a simple way. The idea is then to reduce
the dimension (usually 2 or 3) of the space of interest without losing too much information.

To illustrate the intuitive idea behind PCA, consider the following Figure 1 where we aim to project
a three-dimensional fish onto a two-dimensional space.

Figure 1: 3-dimensional fish onto a 2-dimensional space

The projection that best captures the overall shape of the fish is achieved by projecting onto the
blue and red axes. Among all the possible projections, this specific one allows the fish to take up the
most space in the projected dimension. This is the principle of PCA: finding the axes that maximize
the variability of the projection.

From a mathematical standpoint, we seek the best projection plane, in a least squares sense, to
obtain the most faithful representation of the data.

In this section, we explore the theoretical aspects of PCA on a dataset with n individuals and p
variables. We aim to find the axes that maximize the projection. To achieve this, we use the variance-
covariance matrix to analyze the dispersion of the given data. By doing so, we can obtain the coordinates
for both projected individuals and variables.

1.1 Notation and statistical model

Consider p statistical variables, Xj ∈ Rn for j ∈ J1, pK on n individuals. Let xj
i denote the measure of

Xj for the ith individual. We obtain the following matrix

X =


x1
1 . . . xj

1 . . . xp
1

... . . .
... . . .

...

x1
i . . . xj

i . . . xp
i

... . . .
... . . .

...
x1
n . . . xj

n . . . xp
n

 .
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1. For each individual i, we consider the vector xi ∈ Rp which is the i-th row of X. This element
is in the vector space E called the individual space. This space is endowed with the canonical
basis and a metric M making it an Euclidien space. In this document, the particular case where
M := Ip is studied.

2. For each variable j, we consider the vector xj ∈ Rn which is the j-th column of X. This element is
in the vector space F called the variable space . This space is endowed with the canonical basis
and a diagonal metric 1

n
In allowing it to be an Euclidean space.

Each variable Xj is associated to x̃j = xj − x̄j1n ∈ Rn ⊆ F where 1n := (1 . . . 1)⊤ ∈ Rn and x̄j is
the empirical mean of Xj defined by x̄j = 1

n

∑n
i=1 x

j
i .

We also consider the following definitions:

• Individual barycenter: g = 1
n
X⊤1n = (x̄1 . . . x̄p)⊤ ∈ Rp;

• Matrix of the centered data: X̄ = X − 1ng
⊤;

• Empirical standard deviation: ∀ j ∈ J1, pK, σj =
(
1
n
x̃j⊤x̃j

)1/2
= 1√

n
∥x̃j∥;

• Matrix of reduced data X̃ = X̄Σ−1/2 with Σ = diag(σ2
1, . . . , σ

2
p) (this definition assumes that

∀ j ∈ J1, pK, σj ̸= 0);

• Empirical covariance of Xj and Xj′ : ∀ j, j′ ∈ J1, pK, 1
n
x̃j⊤x̃j′ = 1

n
⟨x̃j, x̃j′⟩;

• Variance/covariance matrix: V = 1
n
X̄⊤X̄ ∈ Mp(R);

• Correlation of Xj, Xj′ : cos(θ(xj, xj′)) = ⟨xj ,xj′ ⟩
∥xj∥∥xj′∥ .

1.2 Inertia

1.2.1 Global inertia

In statistic studies, an observation is represented as a point with the following coordinates (x1
i , . . . , x

p
i )

in a p-dimensional space. The data dispersion is measured thanks to the inertia. The global inertia of
data is the mean of the squared distances between the data and their barycenter:

IE =
1

n

n∑
i=1

(xi − g)(xi − g)⊤ =
1

n

n∑
i=1

p∑
j=1

(xj
i − x̄j)2 =

1

n
Tr(X̄⊤X̄) = Tr(V ).

1.2.2 Projected data inertia

Consider Eq, a q-dimensional subspace of E. Let Bq = (e1, . . . eq) be an orthonormal basis of this
subspace, the orthogonal projection onto Eq is defined by pEq(x) =

∑q
j=1⟨x, ej⟩ej for all x ∈ E. The

orthogonal projector is also written pEq(x) = PEqx with PEq a p× p-dimensional symmetric matrix such
that

PEq = (e1, . . . eq)(e1, . . . eq)
⊤.

Furthermore, since the orthogonal projection onto Eq of a point x ∈ Eq is x, we have P 2
Eq

= PEq .
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Hence, the projected data is associated to the data matrix X̄P⊤
Eq

since each individual is projected

onto Eq using column vector PEqxi or a row vector x⊤
i PEq . Since the covariance-variance matrix of the

data matrix X̄P⊤
Eq

is

VEq =
1

n
(X̄P⊤

Eq
)⊤(X̄P⊤

Eq
) = PEqV P⊤

Eq
, P⊤

Eq
= PEq and P 2

Eq
= PEq

we have
Tr(VEq) = Tr(PEqV P⊤

Eq
) = Tr(V P⊤

Eq
PEq) = Tr(V P 2

Eq
) = Tr(V PEq).

Thus, the inertia of the projected data is equal to Tr(V PEq). Therefore, the goal is to find a projector
that maximizes the trace of V PEq because this will retain the maximum variability of the initial data.

1.3 Principal axes and principal components

In this section, we focus on the axes that maximize the variability of the projection. Then we can
introduce components that are linear combinaison of the original variables in order to capture the most
significant information in the considered dataset.

1.3.1 Principal axes

First, we will investigate the case where q = 1.

Lemma 1. The vector a1 ∈ Rp that maximizes the inertia of the projected data is the eigenvector
of the matrix V associated with its largest eigenvalue.

Proof. Let E1 be the line spanned by the vector a1. Without loss of generality, we assume that a1
is normalized, i.e., ∥a1∥2 = 1. The matrix of the orthogonal projection of E onto E1 is then given
by

PE1 = a1a
⊤
1 .

As seen in Section 1.2.2, the inertia of the data projected onto this line is

Tr(V P1) = Tr(V a1a
⊤
1 ) = Tr (a⊤1 V a1) = a⊤1 V a1

since a⊤1 V a1 is a scalar. Since V is positive semidefinite and symmetric, by the spectral theorem, it
is diagonalizable in an orthonormal basis, and its eigenvalues, λ1, . . . , λn, are non-negative. Thus,
we write V = QDQ⊤ with Q being a rotation matrix (i.e., QQ⊤ = Ip) made up of the orthonormal
vectors q1, . . . , qp, and D = diag(λ1, . . . , λp). Without loss of generality, we assume that λ1 ≥ λ2 ≥
. . . ≥ λp ≥ 0. We then have

a⊤1 V a1 = a⊤1 QDQ⊤a1 = u⊤
1 Du1

where u1 := Q⊤a1 ∈ Rp is a non-zero vector. But,

u⊤
1 Du1 =

p∑
j=1

λju
2
1j ≤ λ1

p∑
j=1

u1j
2 = λ1

since λ1 is the largest eigenvalue and ∥u1∥2 = a⊤1 QQ⊤a1 = ∥a1∥2 = 1 by definition. The projected
inertia is maximum when u⊤

1 Du1 is maximum, which is achieved when u1 = (1 0 . . . 0)⊤, i.e.,

a1 = Qu1 = q1.
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Finally, the vector maximizing the inertia of the data is the eigenvector associated with the largest
eigenvalue of V , and the inertia of the projected data is then equal to:

Tr(V P1) = a⊤1 V a1 = q⊤1 V q1 = λ1q
⊤
1 q1 = λ1.

Then, we construct a subspace such that the projected inertia onto this subspace is maximized.

Proposition 1. The q-dimensional subspace Eq is spanned by the q eigenvectors, a1, ..., aq, of V
associated with the q largest eigenvalues.
The eigenvectors of V with norm 1, (ak)k=1,...,p, are called principal axes, and they are orthonor-
mal.

Proof. Step 1: First, we demonstrate that, if H and G are two orthogonal subspaces then

Tr(V PH⊕G) = Tr(V PH) + Tr(V PG).

This comes from the fact that the projector associated with the direct sum of two orthogonal
subspaces is the sum of the projectors associated with each of these subspaces. Indeed, each x ∈ E
can be rewritten as:

x = xH + xH⊥ .

If (h1, . . . , hk) is an orthonormal basis of H, by the incomplete basis theorem, (hk+1, . . . , hp) is an
orthonormal basis of H⊥ ⊇ G. Without loss of generality, let (hk+1, . . . , hl) with l ≤ p be a basis of
G. Thus,

pH⊕G(x) =
l∑

j=1

⟨x, hj⟩hj =
k∑

j=1

⟨x, hj⟩hj +
l∑

j=k+1

⟨x, hj⟩hj = pH(x) + pG(x).

But, PHx = (h1 . . . hk)(h1 . . . hk)
⊤x =

∑l
j=1(h

⊤
j x)hj =

∑k
i=1⟨x, hi⟩hi (and the same for PG), which

concludes this part of the proof.
Step 2: We prove the following proposition by induction

The q-dimensional subspace Eq having the maximum inertia is the direct sum of 1-
dimensional orthonormal subspaces spanned by the eigenvectors associated with the q
largest eigenvalues of V .

q = 1: As we saw in Lemma 1, the subspace E1 that has the maximum inertia is spanned by the
eigenvector associated with the largest eigenvalue λ1 of V . Therefore, the proposition is satisfied
for a 1-dimensional subspace.
Induction step: Assume the statement holds for q < p. Let us first show that the subspace Eq+1

of maximum inertia is the direct sum of Eq and a vector in E⊥
q : let Gq+1 be a q + 1-dimensional

subspace of E. Since dim(E⊥
q ) = p − q, we have dim(E⊥

q ) + dim(Gq+1) = p + 1 > p = dim(E),
which means that dim(E⊥

q ∩Gq+1) ≥ 1 and therefore there exists a vector v ∈ E⊥
q ∩Gq+1. We can

write Gq+1 = v⊕Gq where Gq and v are orthogonal in Gq+1 and we also denote Ẽ = v⊕Eq. Thus,
dim(Gq) = q and by Step 1,

Tr(V PGq+1) = Tr(V P{v}) + Tr(V PGq)
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Tr(V PẼ) = Tr(V P{v}) + Tr(V PEq)

Since Eq is the maximal inertia subspace, we have, Tr(PVGq) ≤ Tr(PVEq), so Tr(PVGq+1) ≤ Tr(PVẼ)
for every Gq+1. By choosing v such that the inertia of the projected data is the largest in E⊤

q , the

(q + 1)-dimensional subspace such that the inertia is maximum is thus Ẽ.
Let us show that the subspace spanned by v is actually spanned by the eigenvector associated with
the (q+1)-th largest eigenvalue of V . Without loss of generality, we assume that ∥v∥2 = 1 and that
λ1 ≥ . . . ≥ λq+1 ≥ · · · ≥ λp. We define uq+1 := Q⊤v.
By the induction hypothesis, the orthonormal vectors ak = Quk span Eq for k ∈ J1, qK, where
uk = ek is the k-th vector of the canonical basis of E. Since v is orthogonal to Eq, we have

∀k ∈ J1, qK, 0 = v⊤ak = (Quq+1)
⊤Quk = u⊤

q+1uk = uq+1,k.

That leads to the following upper bound

Tr(V P{v}) = v⊤V v = uq+1
⊤Duq+1 =

p∑
j=1

λjuq+1,j
2 =

p∑
j=q+1

λjuq+1,j
2 ≤

p∑
j=q+1

λq+1uj,q+1
2 = λq+1

since
∑p

j=q+1 uq+1,j
2 = u⊤

q+1uq+1 = v⊤QQ⊤v = ∥v∥2 = 1.

Finally, the projected inertia is maximum when uq+1
⊤Duq+1 = λq+1, which is achieved when uq+1 =

eq+1, i.e.,
v = Quq+1 = aq+1.

This completes the proof by definition of Q.

Remark: The proposition allowed us to establish a link between the eigenvalues of V and the inertia
of the data. Step 2 allows us to construct the subspace by proceeding step by step. That is, for each
dimension of projection, q, we choose a vector v orthogonal to Eq and itself such that its projection has
maximum inertia in E⊥

q .

1.3.2 Principal components

The principal components are the vectors ck ∈ Rn defined by:

∀k ∈ J1, pK, ck = X̄ak.

Proposition 2. The variance of a principal component is equal to the eigenvalue λk of the matrix
V corresponding to the eigenvector ak.

Var(ck) = λk.

In addition, the principal components are the eigenvectors of the matrix

1

n
X̄X̄⊤ ∈ Mn(R).
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Proof. On one hand, by definition of ak, we compute Var(ck):

Var(ck) =
1

n
c⊤k ck =

1

n
a⊤k X̄

⊤X̄ak = a⊤k V ak = λk.

On the other hand, as we saw in Lemma 1, ak is an eigenvector of the matrix V . Hence,

V ak = λkak ⇔ 1

n
X̄⊤X̄ak = λkak

⇔ 1

n
X̄X̄⊤X̄ak = λkX̄ak

⇔ 1

n
X̄X̄⊤ck = λkck.

Remark: If we denote A the column matrix of the principal axes (ak)k=1,...,p and C the one of the
principal components (ck)k=1,...,p, we have C = X̄A.

Summary:

1. Principal axes (ak)k: V ak = λkak and (ak)k are orthonormal;

2. Principal components (ck)k:
1
n
X̄X̄⊤ck = 1

n
X̄X̄⊤ck = λkck and (ck)k are orthogonal with norm√

nλk;

3. C = X̄A;

4. We can also introduce the factorial axes, which are the eigenvectors of 1
n
X̄X̄⊤ with norm

√
n,

(uk)k. They are obtained as uk =
√
n×ck
∥ck∥

.

2 Graphs

As seen in the previous section, the principal components capture and represent the most significant
information in a dataset. We can then define the coordinates of projected individuals and variables
onto a lower subspace using these components and the principal axes. Therefore data analysis and the
extraction of insights are made easier.

2.1 Individuals

Graphs are used to help the interpretation of PCA. The obtained graphs allow to represent “as best as
possible” the Euclidean distances between individuals.

Proposition 3. The coordinates of the orthogonal projection of xi − g onto Eq are the q first
elements of the i-th row of matrix C.

Proof. Each individual xi is represented by its orthogonal projection onto the subspace Eq =
Span(a1, . . . aq). Hence, the coordinates of the individual i onto ak are given by

⟨xi − g, ak⟩ = (xi − g)⊤ak = e⊤i X̄ak = ci,k

8



with ei being a vector of the E-canonical basis.

Definition. The overall quality is explained by the proportion of dispersion retained by the
project, as measured by inertia:

χq :=
Tr(V PEq)

Tr(V )
=

∑q
k=1 λk∑p
k=1 λk

.

Proof. The second equality comes from the definition of the trace, Tr(V ) =
∑p

k=1 λk. In addition,
we have,

IEq = Tr(V PEq) =

q∑
k=1

Tr(V P{ak}) =

q∑
k=1

λk.

thanks to the proofs of Lemma 1 and Proposition 2.

Remark: The goal is to have χq the closest to 1.

Definition. The quality of the representation of each xi is given by the squared cosine of the
angle between xi and its projection

cos2
(
θ
(
xi − g, PEq(xi − g)

))
=

∥PEq(xi − g)∥2

∥xi − g∥2
=

∑q
k=1(ci,k)

2∑p
k=1(ci,k)

2
.

Proof. Since

cos
(
θ
(
xi − g, PEq(xi − g)

))
=

⟨xi − g, PEq(xi − g)⟩
∥xi − g∥∥PEq(xi − g)∥

=
⟨PEq(xi − g) + PE⊤

q
(xi − g), PEq(xi − g)⟩

∥xi − g∥∥PEq(xi − g)∥

=
⟨PEq(xi − g), PEq(xi − g)⟩
∥xi − g∥∥PEq(xi − g)∥

=
∥PEq(xi − g)∥2

∥xi − g∥∥PEq(xi − g)∥

=
∥PEq(xi − g)∥

∥xi − g∥
,

we find the first equality by applying squared to the previous equality.
For the second equality, we use

1. ⟨xi − g, ak⟩ = ci,k

2. PEq(xi − g) =
∑q

k=1⟨xi − g, ak⟩ak

3. xi − g =
∑p

k=1⟨xi − g, ak⟩ak.

9



Hence, by orthonormality of the principal axis, we have

∥PEq(xi − g)∥2 = ⟨PEq(xi − g), PEq(xi − g)⟩

=

q∑
l,k=1

⟨xi − g, ak⟩⟨xi − g, al⟩⟨ak, al⟩

=

q∑
k=1

⟨xi − g, ak⟩2 since (ak)k are orthogonal

=

q∑
k=1

(ci,k)
2.

Similarly, ∥xi − g∥2 =
∑p

k=1(ci,k)
2, which completes the proof.

Definition. The contribution of each individual to the data inertia is

γi :=
∥xi − g∥2

nTr(V )
=

∑p
k=1(ci,k)

2

n
∑p

k=1 λk

.

In particular, the contribution of the ith individual to component ck is

γk
i :=

(ci,k)
2

nλk

.

This allows to find the most influential observations and eventually outliers. In this case, we can remove
outliers for a new analysis and still represent them (as an external data) with respect to the principal
axis.

2.2 Variables

The obtained graphs allow to represent the correlations between the components and the initial variables.

Proposition 4. The coordinates of the orthogonal projection of x̃j onto Fq with respect to
the norm induced by 1

n
In are the q first elements of the jth row of the matrix AD1/2, where

D1/2 := diag(
√
λ1, . . . ,

√
λp)

Proof. Without loss of generality, we consider only the projections onto the axes corresponding to
the positive eigenvalues, the others being irrelevant for the analysis. The orthogonal projection
pFq(x̃

j) onto the subspace Fq, spanned by the q first factorial axes, represent the variable Xj. Since
V is symmetric and positive, its eigenvalues are all positives. Consider the vectors uk for k ∈ J1, rK
with r ≤ p such that cr is the last component for which λr ̸= 0. The coordinates of the variables
with respect to the norm induced by 1

n
In are the coordinates of the orthogonal projection of x̃j onto

uk (because it has norm 1 for 1
n
In):

⟨x̃j, uk⟩
∥uk∥2

=
1

n
x̃j⊤uk =

1

n
√
λk

x̃j⊤ck =
1

n
√
λk

ej⊤X̄⊤ck =
1

n
√
λk

ej⊤X̄⊤X̄ak =
1√
λk

ej⊤V ak =
√
λk aj,k.

Here, ej is the j-th vector of the canonical basis of F . This completes the proof.

10



Definition. The quality of the representation of each x̃j is given by the squared cosine of the
angle between x̃j and its projection.

cos2
(
θ
(
x̃j, PFq(x̃

j)
))

=
∥PFq(x̃

j)∥2

∥x̃j∥2
=

∑q
k=1 λk(aj,k)

2∑p
k=1 λk(aj,k)2

.

Remark: The proof is similar to the one on the quality of the representation for individuals. The
variable-factor correlation index allows the interpretation of the factor axes thanks to a correlation factor
between principal variables ck and initial variables x̃j. Thus

cos
(
θ
(
x̃j, ck

))
= cos

(
θ
(
x̃j, uk

))
=

⟨x̃j, uk⟩
∥x̃j∥∥uk∥

=
⟨x̃j, uk⟩
∥x̃j∥

√
n
=

n
√
λkaj,k

∥x̃j∥
√
n

=

√
λkaj,k
σj

.

because ck and uk are co-linear and the norm of uk is
√
n. The correlation (unit) circle, Sn∩F2, allows to

determine the representation quality of a variable. The reduced variables ˜̃xj = x̃j

σj
are on the sphere Sn

of radius 1 in F . Since the projections x̃j and ˜̃xj are colinear and ∥PFq(˜̃x
j)∥ = cos

(
θ
(
˜̃xj, PFq(˜̃x

j)
))

≤ 1,

the closer PFq(˜̃x
j) is to the unit circle, the better the quality of the representation of the variables is.

3 Choice of the dimension

The quality of the data-interpretation depends essentially on the dimension q of the representation
subspaces. There exist several criteria that allow to choose q:

1. We can first choose q so that the overall quality, measured by the proportion of explained inertia,

rq =

∑q
k=1 λk∑p
k=1 λk

is higher than a fixed threshold value.

2. Another method is to use the Kaiser’s rule. This consists in considering only the eigenvalues that
are larger than their mean. In particular, in the case of reduced data matrices, only eigenvalues
with a value larger than 1 are considered.

3. It is also possible to use the scree plot and look for an “elbow” in the graph, and to retain the
eigenvalues up to this elbow. Catell’s scree-test is the analytical version of this. For k ∈ J1, pK, it
computes the first differences

λk − λk+1 = εk

and then, the second differences
εk − εk+1 = δk.

The selected eigenvalues λ1, λ2, . . . , λk, λk+1 are those such that δk is positive.

4 Application

Analysis for the project
To illustrate the theory, we will use the data made available within the context of the “PeerSim”

project.
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To analyze combined stresses on the plant Arabidopsis thaliana, we are investigating how genes are
expressed under different culture conditions. These conditions include ambient temperature with either
elevated or ambient CO2 concentration, as well as high temperature with either elevated or ambient
CO2 concentration. We have gene expression data from 6 replicates for each condition. On the whole
we study 24 replicates.

From a mathematical standpoint, the replicates refer to the 24 individuals in the dataset, while the
genes refer to the variables being studied.

When performing PCA on the gene expression matrix, we obtain graphs of individuals and graphs
of variables.

On the individual graphs:

Figure 2: Individual graph

In Figure 2, the graph represents the projected individuals onto the principal axes 1 and 2.
Axis 1 explains 24.8% of the total variance, and axis 2 explains 19.6% of the total variance. Thus,

using axes 1 and 2 we can explain 44.4% of the variance in the dataset. In this graph of individuals, the
color distinguishes the temperature conditions. Here, axis 1 plays a discriminating role by separating
the replicates studied under high-temperature conditions from the replicates studied under ambient
temperature conditions.

On the variable graphs:
In Figure 3, the graph represents the variables projected onto the axes 1 and 2. This represent

the correlation between the principal component and the genes. Here, we represent the genes with a
contribution to the axes higher than 0.96.

The graph of variables helps extract information from the graph of individuals, revealing additional
insights. For example if genes show a correlation with axis 1 in the variable graph, it indicates a
statistical relationship with the positively represented individuals along axis 1 in the individual graph.
Nevertheless, further investigation is needed to determine the biological or functional implications of
this association.

12



Figure 3: Variable graph

Part II

Kernel Principal Component Analysis
Kernel Principal Component Analysis (Kernel PCA) is an extension of the PCA. To motivate the interest
in kernel PCA, let us talk about the “PeerSim” project. The initial objective of my internship was to
determine the impact of the number of replicates on the biological interpretation of statistical results.
To achieve this, we can construct multiple graphs by varying the number of studied replicates while
keeping the same number of replicates for each condition. These graphs are constructed based on the
relationships between genes, derived from the gene expression matrix. From there, the goal is to compare
these graphs. Since kernel PCA offers the advantage of comparing non-numerical data, we can compare
in particular gene networks.

We consider n observations (xi)i=1,...,n that take their values in an arbitrary space X .

13



1 Reproducing Kernel Hilbert spaces

In this section, we first introduce Reproducing Kernel Hilbert Spaces and properties in order to define
Kernel PCA.

1.1 Some reminders on Hilbert spaces

Definition. A pre-Hilbert space H is a vector space endowed with an inner product ⟨., .⟩H.

Definition. A Cauchy sequence (fn) is a sequence such that

lim
N→∞

sup
n,m≥N

∥fn − fm∥H = 0.

Definition. A Hilbert space is a complete pre-Hilbert space for the norm ∥.∥H, meaning that every
Cauchy sequence in H converges in H.

1.2 RKHS and kernel

Definition. Let X be an arbitrary space, K : X ×X → R be a function and H be a Hilbert space
endowed with an inner product ⟨., .⟩H. For every x ∈ X , we denote by κx the function defined by
κx : t ∈ X → K(x, t). The function K is called Reproducing Kernel if

• ∀x, κx is an element of H;

• ∀x ∈ X and ∀f ∈ H, f(x) = ⟨f, κx⟩H (reproducing property).

If such a reproducing kernel exists, H is called a Reproducing Kernel Hilbert Space (RKHS).

Proposition 5. If H is a RKHS, then the reproducing kernel is unique. Conversely, a function
K can be the reproducing kernel of at most one RKHS.

Proof. Let H be a RKHS with K and K ′ two reproducing kernels of this space. For every x ∈ X ,
we have

∥κx − κ′
x∥2H = ⟨κx − κ′

x, κx − κ′
x⟩H

= ⟨κx, κx⟩H − ⟨κ′
x, κx⟩H − ⟨κx, κ

′
x⟩H + ⟨κ′

x, κ
′
x⟩H

= κx(x)− κ′
x(x)− κx(x) + κ′

x(x) = 0.

Thus, we have

∀x ∈ X , κx = κ′
x ⇔ κx(t) = κ′

x(t) ∀t ∈ X
⇔ K(x, t) = K ′(x, t) ∀t ∈ X
⇔ K = K ′.

Conversely, we now assume that K is the reproducing kernel of two Hilbert spaces H and H′.
By definition of the reproducing kernel, we know that all the functions κx for x ∈ X are in H.
Therefore,

H0 = Span

{
n∑

i=1

αiκxi
,∀i ∈ J1, nK αi ∈ R, xi ∈ X

}

14



is a subspace of H.
If f ∈ H is orthogonal to H0 then it is in particular orthogonal to κx for any x ∈ X which implies

∀x ∈ X f(x) = ⟨f, κx⟩H = 0 i.e. f = 0.

Then H⊥
0 = {0}H. Since H is a Hilbert space (H⊥

0 )
⊥ = H0 thus

H0 = (H⊥
0 )

⊥ = {0}⊥H = H.

In other words, H0 is dense in H.
Moreover for f ∈ H0 we can write f :=

∑n
i=1 αiκxi

.
The H-norm for functions in H0 only depends on the reproducing kernel K because

∥f∥2H =
n∑

i,j=1

αiαj⟨κxi
, κxj

⟩H

=
n∑

i,j=1

αiαjK(xi, xj).

Suppose now that H′ is also a RKHS that admits K as reproducing kernel. By the same argument
H0 is dense in H′ and the H′-norm in H0 is also given by ∥f∥2H′ =

∑n
i,j=1 αiαjK(xi, xj).

In particular, for any f ∈ H0

∥f∥H = ∥f∥H′ ,

and by the reproducing property

∀x ∈ X ⟨f, κx⟩H = f(x) = ⟨f, κx⟩H′ .

Then, let us prove that the two RKHS are equal.
Since H0 is dense in H, for any f ∈ H, there exists (fn)n ∈ H0 such that

∥fn − f∥H →n→∞ 0

i.e. ∀ϵ > 0 ∃N ∈ N,∀n ≥ N ∥fn − f∥H ≤ ϵ/2.
This sequence is Cauchy for the H-norm because for n,m > N

∥fn − fm∥H ≤ ∥fn − f∥H + ∥fm − f∥H ≤ ϵ.

Since the norms coincide for each element of H0, the sequence (fn)n is also Cauchy for the H′-norm.
Moreover, as H′ is complete, the Cauchy sequence converges towards a function g ∈ H′.
Using the reproducing property and that the inner-product coincide for any element of H0 we have

∀x ∈ X f(x) = ⟨f, κx⟩H = lim
n→∞

⟨fn, κx⟩H = lim
n→∞

⟨fn, κx⟩H′ = ⟨g, κx⟩H′ = g(x).

In other words f = g, therefore f ∈ H′ i.e; H ⊆ H′. By symmetry of the argument H = H′.
Hence, we have also shown, by the reproducing property, that the inner product in H and in H′

coincide for each f which completes the proof.

15



Theorem 1. The Hilbert space H is a RKHS if and only if the linear map

∀x ∈ X , F : H −→ R
f 7−→ f(x)

is continuous.

Proof. ⇒ We assume that the reproducing kernel K exists. Since F (f) = ⟨f, κx⟩H, the map F is
linear. Moreover, for every fixed x ∈ X and every f ∈ H, we have

|F (f)| = |f(x)| = |⟨f, κx⟩H| ≤ ∥f∥H∥κx∥H by Cauchy-Schwarz

≤ ∥f∥H⟨κx, κx⟩1/2H = ∥f∥HK(x, x)1/2.

The map f 7−→ f(x) is therefore Lipschitz with the Lipschitz constant equal to K(x, x)1/2 ≥ 0,
and hence, it is continuous.
⇐ Conversely, let H be a Hilbert space, assume for every x ∈ X , the linear map F continuous. By
Riesz’s representation theorem, there exists an unique gx ∈ H such that

f(x) = ⟨f, gx⟩H.

The function gx ∈ H defines a function K : (x, t) 7−→ gx(t). Thus defined, the function K verifies
the definition of the reproducing kernel. Hence, H is a RKHS.

Remark: By the linearity of F , if there exists a sequence fn ∈ H that converges towards 0, then
fn(x) converges towards 0 for each x ∈ X .

Definition. A kernel is a function
K : X × X → R,

that is symmetric and positive definite (i.e., ∀k ∈ N, ∀i ∈ J1, kK, αi ∈ R, and xi ∈ X ,∑k
i,j=1 αi, αjK(xi, xj) ≥ 0.) For every set {x1, . . . , xn} ⊂ X , we can also define a positive semi-

definite symmetric kernel matrix

K := (κxixi′
)i,i′=1,...,n ∈ S+

n (R),

where κxixi′
:= K(xi, xi′). This matrix K is called the Gram matrix.

The following proposition allows us to define a RKHS solely based on the kernel definition.

Proposition 6. Let K : X × X → R be a function. The function K defines a kernel if and only
if K is the reproducing kernel of a Hilbert space H endowed with the inner product ⟨., .⟩H.

Proof. ⇐We assume thatK is a reproducing kernel. Let us show thatK is a kernel. It is symmetric
because

∀(x, y) ∈ X 2, K(x, y) = κx(y) = ⟨κx, κy⟩H = ⟨κy, κx⟩H = K(y, x).
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Moreover, it is positive because for every N ∈ N, (x1, . . . , xN) ∈ XN and (a1, . . . aN) ∈ RN

N∑
i,j=1

aiajK(xi, xj) =
N∑

i,j=1

aiaj⟨κxi
, κxj

⟩H =

∥∥∥∥∥
N∑
i=1

aiκxi

∥∥∥∥∥
2

H

≥ 0.

⇒ We now assume that K is a kernel, let us show that K is the reproducing kernel of a Hilbert
space H.
To do this, we consider the space H0 spanned by the functions (κx)x∈X . Thus, for every f, g ∈ H0,
we can write f =

∑m
i=1 aiκxi

and g =
∑n

j=1 bjκxj
. We endow this space with the following symmetric

bilinear form
⟨f, g⟩H0 :=

∑
i,j

aibjK(xi, xj).

Due to the symmetry of K and for every x ∈ X and f ∈ H0:

⟨f, κx⟩H0 =
m∑
i=1

aiK(xi, x) =
m∑
i=1

aiκxi
(x) = f(x).

Also, since K is positive definite,

∥f∥2H0
=

m∑
i,j=1

aiajK(xi, xj) ≥ 0.

Thus, f is a positive semi-definite and symmetric bilinear form and we can apply Cauchy-Schwarz
inequality,

∀x ∈ X , |f(x)| = |⟨f, κx⟩H0| ≤ ∥f∥H0K(x, x)1/2.

Therefore if ∥f∥H0 = 0 then for all x ∈ X f(x) = 0 thus f = 0, which is sufficient to conclude that
⟨., .⟩H0 defines an inner product and thus that (H0, ⟨., .⟩H0) is a prehilbertian space.
In addition, since, for all x ∈ X , F (f) = ⟨f, κx⟩H0 where ⟨., .⟩H0 is a bilinear form, we have
F (f) ≤ ∥f∥H0K(x, x)1/2 for all f ∈ H0. This implies that F : f ∈ H0 → f(x) ∈ R is a continuous
linear map.
Now, letH be the smallest space containingH0 such that any Cauchy sequence (fn)n ∈ H0 converges
to an element f ∈ H. We will show that H is a Hilbert space and that F is continuous on H. Then,
by Theorem 1, we will be able to conclude that H is a RKHS with kernel K.
First, note that H0 is dense in H by definition of H. Then, for every f, g ∈ H, there exist Cauchy
sequences (fn)n and (gn)n in H0 which converge to f and g in H respectively. We will show that
(⟨fn, gn⟩H0)n is a Cauchy sequence: For every n,m ∈ N,

|⟨fn, gn⟩H0 − ⟨fm, gm⟩H0| = | ⟨fn − fm, gn⟩H0 + ⟨fn, gn − gm⟩H0|
≤ ∥fn − fm∥H0∥gn∥H0 + ∥fm∥H0∥gn − gm∥H0

by Cauchy-Schwarz inequality. Now, by definition of Cauchy sequences, for every ε > 0 there exists
N ∈ N such that, for every n,m ≥ N , ∥fn−fm∥H0 ≤ ε and ∥gn−gm∥H0 ≤ ε. Moreover, each Cauchy
sequence is bounded then we can define a constantM := max(mf ,mg) withmf = sup({∥fn∥H0}n∈N)
and mg = sup({∥gn∥H0}n∈N). Thus, for every n,m ≥ N , we obtain:

|⟨fn, gn⟩H0 − ⟨fm, gm⟩H0| ≤ 2Mε.
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Since M is a constant and since this inequality holds for any ε > 0, we deduce that (⟨fn, gn⟩H0)n is
a Cauchy sequence. This Cauchy sequence is in R and therefore converges.
To show that the limit of the Cauchy sequence (⟨fn, gn⟩H0)n only depends on f and g, we consider
two other Cauchy sequences (f ′

n) and (g′n) which converge to f and g respectively. For every n ∈ N,
we have

|⟨fn, gn⟩H0 − ⟨f ′
n, g

′
n⟩H0| ≤ ∥fn − f ′

n∥H0∥gn∥H0 + ∥f ′
n∥H0∥gn − g′n∥H0

(fn − f ′
n)n and (gn − g′n)n are Cauchy sequences in H0 converging to 0. It follows that the inner

products (⟨fn, gn⟩H0)n and (⟨f ′
n, g

′
n⟩H0)n have the same limits. This enables us to to define a positive

semi-definite symmetric bilinear form on H by setting

⟨f, g⟩H = lim
n
⟨fn, gn⟩H0 .

To demonstrate that this symmetric bilinear form is an inner product, we finally need to show that:
∥f∥H = 0 =⇒ f = 0.
Let f ∈ H such that ∥f∥H = 0. By definition of H, there exists a Cauchy sequence (fn)n in H0

which converges to f . By definition of the symmetric bilinear form on H, we have

lim
n
⟨fn, fn⟩H0 = ⟨f, f⟩H = 0.

Since ⟨., .⟩H0 is an inner product, by Cauchy-Schwarz inequality we have:

∀x ∈ X , ∀n ∈ N, |fn(x)| ≤ ∥fn∥H0K(x, x)1/2

and thus, as limn ∥fn∥H0 = 0, we obtain limn |fn(x)| = 0 which proves that f(x) = limn fn(x) = 0
for all x ∈ X . We finally conclude that f = 0, that ⟨., .⟩H is an inner product, and that (H, ⟨., .⟩H)
is a pre-Hilbert space.
To finally show that (H, ⟨., .⟩H) is a Hilbert space, we thus just need to show that it is a complete
space. Let (fn)n ∈ H be a Cauchy sequence which converges towards a function f . We want to
prove that f belongs to H.
Since H0 is dense in H, we have

∀ε > 0 ∀n ∈ N∗, ∃gn ∈ H0 : ∥fn − gn∥H ≤ ε.

Let us show that (gn)n is a Cauchy sequence: (fn)n is a Cauchy sequence, which means that, for all
ε > 0, there exists N ∈ N such that for every n,m > N , ∥fn − fm∥H < ε then

∥gn − gm∥H0 = ∥gn − gm∥H ≤ ∥gn − fn∥H + ∥fn − fm∥H + ∥fm − gm∥H ≤ 3ε

Hence, (gn)n is a also a Cauchy sequence. Thus, by definition of H, the sequence (gn)n converges
towards g ∈ H, i.e. ∀ε ∃N > 0, ∀n,m > N, ∥gn−g∥H < ε. Let us prove that the sequence (fn)n
also converges towards g ∈ H:

∥fn − g∥H ≤ ∥fn − gn∥H + ∥gn − g∥H ≤ ε+ ε = 2ε.

Therefore, (fn)n converges to g in H, which proves that f = g ∈ H and that H is complete.
Finally, it only remains to prove that the continuous linear map F : H0 → R extends to a continuous
linear map on H. The linearity of F on H arises directy from the bilinearity of the inner product
⟨., .⟩H because, for a given x ∈ X , we have:

∀ f ∈ H, F (f) = f(x) = lim
n

fn(x) = lim
n
⟨fn, κx⟩H0 = ⟨f, κx⟩H.
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Moreover, by Cauchy-Schwarz inequality on the inner product ⟨., .⟩H, we have

∀f ∈ H, |F (f)| = |⟨f, κx⟩H| ≤ ∥f∥HK(x, x)1/2

which proves the continuity of F on the Hilbert space H.
Finally, by Theorem 1, H is a RKHS.

In addition to the previous proposition, the following theorem shows that the RKHS is defined
uniquely based on a kernel and the same kernel enables the definition of a mapping function. This will
be particularly useful in kernel PCA because we prefer to define a kernel rather than an explicit RKHS
and a mapping function, which will remain implicit.

Theorem 2. (Moore-Aronszajn) The function K : X × X → R defines a kernel if and only if
there exists an unique reproducing kernel Hilbert space H, endowed with the inner product ⟨., .⟩H,
and a function ϕ : X → H such that

∀x, x′ ∈ X K(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H.

This function is called the mapping function.

Space X

x1

x2

x3

x4

x5

x6

Hilbert space H

ϕ(x1)

ϕ(x2)
ϕ(x3)

ϕ(x4)
ϕ(x5)ϕ(x6)

ϕ

Figure 4: Information embedded in a Hilbert space

Proof. ⇒ We assume that K defines a kernel then, by Proposition 6, K is a reproducing kernel of
the Hilbert space H endowed with the inner product ⟨., .⟩H.
By definition of the RKHS, for each x ∈ X , we define κx : t ∈ X → K(t, x) ∈ R such that κx ∈ H.
Thus κx allows to define a mapping function ϕ : X → H such that

∀x ∈ X , ϕ(x) = κx,

which satisfies:
∀(x, y) ∈ X 2, ⟨ϕ(x), ϕ(y)⟩H = ⟨κx, κy⟩H = K(x, y),

by the kernel reproducing property.
⇐ Conversely, assume that K is a reproducing kernel of the Hilbert space H, and ϕ a function

19



such that K(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ for every x, x′ ∈ X . By the previous proposition K is indeed
symmetric and positive.
Moreover, the mapping function ϕ(x) corresponds to κx.
Indeed, for every x ∈ X , since K is a reproducing kernel in a Hilbert space H, we can define for
every t ∈ X , κx : t → K(x, t) ∈ R. In particular, by assumption

⟨κx, κt⟩ = K(x, t) = ⟨ϕ(x), ϕ(t)⟩

By Riesz’s representation theorem, ϕ(x) ∈ H is unique for every ϕ(t) ∈ H i.e. ∀t ∈ X

⟨κx, κt⟩ = ⟨ϕ(x), κt⟩ = ⟨ϕ(x), ϕ(t)⟩ ⇔ ⟨ϕ(x), κt − ϕ(t)⟩ = 0

In particular we have,

⟨ϕ(x), κx − ϕ(x)⟩ = 0 ⇔ κx − ϕ(x) = 0 ⇔ ϕ(x) = κx.

2 Kernel trick

We use kernel structures to transform data into a space with more interresting properties. For example,
we can map a non-linear model in X to a linear model in H, f(x) = ⟨ϕ(x), f⟩H.

Usually, H and ϕ are not explicitly given but are used implicitly through the kernel: this is called the
kernel trick. It consists of using the mapping of X into H by expressing inner products and distances
in H thanks to the kernel values. For example, the distance between two elements x1, x2 of X can be
expressed solely with the kernel as the distance between their respective images in H, i.e.,

d2H(x1, x2) = ∥ϕ(x1)− ϕ(x2)∥2H.

With the kernel trick, we obtain the following relation

Proposition 7. Let x1 and x2 be two elements of X , then

dH(x1, x2) =
√

K(x1, x1) +K(x2, x2)− 2K(x1, x2)

Proof.

d2H(x1, x2) = ∥ϕ(x1)− ϕ(x2)∥2H = ⟨ϕ(x1)− ϕ(x2), ϕ(x1)− ϕ(x2)⟩H
= ⟨ϕ(x1), ϕ(x1)⟩H + ⟨ϕ(x2), ϕ(x2)⟩H − 2⟨ϕ(x1), ϕ(x2)⟩H
= K(x1, x1) +K(x2, x2)− 2K(x1, x2)

Examples: 1. The Gaussian kernel defined by

K(x, y) = e−
∥x−y∥2

2σ2 ∀σ ∈ Rd

20



induces the distance

dH(x, y) =

√
2

(
1− e−

∥x−y∥2
2σ2

)
.

2. If S is a set of points {x1, . . . xn} in X , we can compute the distance in H between this set and a
point of X using the barycenter. We speak of similarity between a point in X and a set S. To do this,
we map all the points of S in the feature space, we summarize S by its barycenter

µ :=
1

n

n∑
i=1

ϕ(xi)

which leads to the distance between x and S

dH(x, µ) = ∥ϕ(x)− µ∥H =

√√√√K(x, x)− 2

n

n∑
i=1

K(x, xi) +
1

n2

n∑
i,j=1

K(xi, xj).

Definition. Let S be a set of points {x1, . . . xn} in X . The mapping function corresponding to the
centered data of ϕ : S → H in the feature space is defined by

∀x ∈ S, ϕ̃(x) = ϕ(x)− µ.

where µ is the barycenter of the elements of S in the feature space.

Proposition 8. Let S = {x1, . . . , xn} ∈ X be a set of points, and let K be a kernel defined on
X . If K is the symmetric Gram matrix of size n× n, whose entries are K(xi, xj) = κxixj

then the

Gram matrix K̃ associated with the centered data K̃(xi, xj) = κ̃xixj
has entries

κ̃xixj
= ⟨ϕ̃(xi), ϕ̃(xj)⟩H = κxixj

− 1

n

n∑
l=1

(κxixl
+ κxjxl

) +
1

n2

n∑
l,l′=1

κxlxl′

which can be rewritten in a matrix form:

K̃ = (In −
1

n
1n×n)K(In −

1

n
1n×n),

where 1n×n ∈ Mn(R) has entries 1.
The centered function K̃(x, y) = ⟨ϕ(x)− µ, ϕ(y)− µ⟩, for x, y ∈ S, defines a centered kernel.

Proof. We define for every 0 ≤ i, j ≤ n

κ̃xixj
= ⟨ϕ̃(xi), ϕ̃(xj)⟩H = ⟨ϕ(xi), ϕ(xj)⟩H − ⟨µ, ϕ(xi) + ϕ(xj)⟩H + ⟨µ, µ⟩H

= κxixj
− 1

n

n∑
l=1

(κxixl
+ κxjxl

) +
1

n2

n∑
l,l′=1

κxlxl′
.

This can be rewritten in matrix form as

K̃ = K− 1

n
1n×nK− 1

n
K1n×n +

1

n2
1n×nK1n×n = (In −

1

n
1n×n)K(In −

1

n
1n×n).
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Finally, we show that K̃ is indeed a kernel.

K̃(x, y) = ⟨ϕ(x)− µ, ϕ(y)− µ⟩ = ⟨ϕ(x), ϕ(y)⟩H − ⟨µ, ϕ(x) + ϕ(y)⟩H + ⟨µ, µ⟩H

= ⟨ϕ(x), ϕ(y)⟩H − 1

n

n∑
i=1

(⟨ϕ(xi), ϕ(x)⟩H + ⟨ϕ(xi), ϕ(y)⟩H) +
1

n2

n∑
l,l′=1

⟨ϕ(xl), ϕ(xl′)⟩H

= K(x, y)− 1

n

n∑
i=1

(K(xi, x) +K(xi, y)) +
1

n2

n∑
l,l′=1

K(xl, xl′)

For every x, y ∈ X , K̃(x, y) ∈ R because K̃(x, y) is a sum of element of R. Moreover, due to the
symmetry of K,

K̃(x, y) = ⟨ϕ(x), ϕ(y)⟩H − 1

n

n∑
i=1

(⟨ϕ(xi), ϕ(x)⟩H + ⟨ϕ(xi), ϕ(y)⟩H) +
1

n2

∑
l,l′

⟨ϕ(xl), ϕ(xl′)⟩H

= ⟨ϕ(y), ϕ(x)⟩H − 1

n

n∑
i=1

(⟨ϕ(xi), ϕ(y)⟩H + ⟨ϕ(xi), ϕ(x)⟩H) +
1

n2

∑
l,l′

⟨ϕ(xl), ϕ(xl′)⟩H

= K̃(y, x)

To conclude, we show the positivity of K̃. For every (αi)i∈J1,nK ∈ R and (xi)i ∈ X , we have:

n∑
i,j=1

αiαjK̃(xi, xj) =
n∑

i,j=1

⟨αiϕ̃(xi), αjϕ̃(xj)⟩H =

∥∥∥∥∥
n∑

i=1

αiϕ̃(xi)

∥∥∥∥∥
2

H

≥ 0.

The RKHS is a space of potentially non-linear functions and the norm of f measures the smoothness
of f . In the following theorem, we seek a form of f that minimizes a regularization function g. In other
words, the goal is to limit the complexity of the obtained solution.

Theorem 3. (Representer theorem) Let X be a space, K : X ×X → R be a kernel on X , and
H be the corresponding RKHS. Let S = {x1, . . . xn} ⊆ X , and let g be a (n+1)-variable function
defined as:

g : Rn+1 −→ R
(f(x1), . . . , f(xn), ∥f∥H) 7−→ q((f(x1), . . . , f(xn)) + λg̃(∥f∥H)

where q(.) is a cost function that measures the goodness-of-fit of f to a given problem, λ > 0 is a
scalar, and g̃ is a strictly increasing function.
If f ∈ H minimizes g(f(x1), . . . , f(xn), ∥f∥H), then f belongs to Span(κx1 , . . . κxn).

Proof. Let HL be a finite dimensional subspace of H. Thus, f ∈ H can be uniquely written as

f = fL + fL⊥

with fL ∈ HL and fL⊥ in the orthogonal complement HL⊥ of HL. By the Pythagorean theorem in

22



H, we have
∥f∥2H = ∥fL∥2H + ∥fL⊥∥2H.

Thus, by the monotonicity of g̃, we have, for every xi ∈ S:

g̃(∥f∥H) ≥ g̃(∥fL∥H)
⇔

g(f(x1), . . . , f(xn), ∥f∥H) ≥ g(f(x1), . . . , f(xn), ∥fL∥H).

Now, g(f(x1), . . . , f(xn), ∥f∥H) is the minimum of g, so g(f(x1), . . . , f(xn), ∥f∥H) =
g(f(x1), . . . , f(xn), ∥fL∥H), and the minimum of g is reached when g̃(∥fL∥) = g̃(∥f∥), i.e., when
∥fL⊥∥H = 0 because g̃ is strictly increasing. This implies that the minimum of g is reached when
fL⊥ = 0. Since H is a RKHS, by the reproducing property, we deduce that the minimum of g is
reached when f ∈ Vect(κx1 , . . . , κxn) for every xi ∈ S.
This completes the proof.

Remark/Consequences:

1. When the representer theorem holds, we know that we can look for a solution of the form

f =
n∑

i=1

ciκxi
for some c ∈ Rn.

and the norm of f is then

∥f∥2H =

∥∥∥∥∥
n∑

i=1

ciκxi

∥∥∥∥∥
2

H

=
n∑

i=1

n∑
j=1

cicjK(xi, xj) = c⊤Kc.

2. Therefore, seeking f that minimizes g(f(x1), . . . , f(xn), ∥f∥H) amounts to seeking c ∈ Rn that
minimizes g([Kc]1, . . . , [Kc]n, c

⊤Kc). This latter consequence is used in the next section.

3 From PCA to Kernel PCA

We consider X an arbitrary space containing n data points (xi)i∈J1,nK. In order to extend PCA to
such data, we introduce Kernel PCA which enables the comparison of data that may not be linearly
separable or even numerical in nature. In this section, we will show how to adapt PCA to RKHS. Note
that, since we no longer always have numerical variables, we should work on the dual version of the PCA
(i.e., computing the principal components in analogy with the standard case and then linking them to
principal axes that are never explicitly computed). Even when X is the standard Rp, Kernel PCA can
present some advantages over PCA: in cases where data exhibit a non-linear separability, Kernel PCA
provides enhanced separation capabilities and facilitates the detection of non-linear relationships.

To achieve this, we consider a positive kernel function, denoted as K : X ×X → R. As discussed in
the previous section, the kernel function allows us to define an implicit Hilbert spaceH and an associated
mapping function ϕ : X → H. For the purpose of our analysis, we consider centered data and a modified
kernel K̃ defined as K̃(xi, xj) = ⟨ϕ̃(xi), ϕ̃(xj)⟩H, where ⟨·, ·⟩H denotes the inner product in the implicit
reproducing kernel Hilbert space H, and ϕ̃ : X → H represents the centered mapping function.
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Furthermore, we denote the centered Grammatrix associated with the kernel as K̃ = (K̃(xi, xj))i,j∈J1,nK.
This matrix is also called similarity matrix. This matrix captures the pairwise similarities between the
centered data points using the kernel function. Once defined, we can use the same tools on this matrix
as in standard PCA.

Definition. We define the global inertia of the data by

IH(x1, . . . , xn) :=
n∑

i=1

∥∥∥ϕ̃(xi)
∥∥∥2
H
=

n∑
i=1

K̃(xi, xi) = Tr(K̃)

In addition, for ak ∈ H, we define the inertia of data projected onto ak:

IH(Pak(x1), . . . , Pak(xn)) :=
n∑

i=1

∥Pak(ϕ̃(xi))∥2H =
n∑

i=1

∥∥∥∥∥⟨ϕ̃(xi), ak⟩H
∥ak∥2H

ak

∥∥∥∥∥
2

H

=
n∑

i=1

1

∥ak∥4H

〈
⟨ϕ̃(xi), ak⟩Hak, ⟨ϕ̃(xi), ak⟩Hak

〉
H
=

n∑
i=1

⟨ϕ̃(xi), ak⟩2H
∥ak∥2H

where Pak(ϕ̃(xi)) is the projection of ϕ̃(xi) onto ak.
Furthermore, when ak has a norm of 1, IH(Pak(x1), . . . , Pak(xn)) =

∑n
i=1⟨ϕ̃(xi), ak⟩2H.

Here, the inertia of projected data onto ak is defined by the inner product that induced the RKHS
H. As we want to adapt PCA to the RKHS, we focus on the dual version of the PCA using the Gram
matrix K̃. This will allow us to define inertia based on K̃.

Since K̃ is a positive and symmetric matrix, we can write its spectral decomposition as K̃ = UDU⊤

with D = diag(λ1, . . . , λn), where the eigenvalues are positive and arranged in decreasing order, and U
is the rotation matrix containing orthonormal eigenvectors (u1, . . . , un) as its columns.

Definition. We define the principal components ck as

∀k ∈ J1, nK, ck :=
√

λkuk.

Proposition 9. Let k ∈ J1, nK. The principal components are orthogonal for K̃ and the norm ck
induced by the matrix K̃ is λ2

k.

Proof. Since the column vectors, (uk)k of the rotation matrix are orthonormal, we have

∀k ∈ J1, nK c⊤k K̃ck′ =
√

λkλk′u
⊤
k K̃uk′ = λk′

√
λkλk′u

⊤
k uk′ =

{
λ2
k if k = k′

0 otherwise

which proves that (ck)k are orthogonal for K̃ and the induced norm of ck is λ2
k for the norm induced

by the matrix K̃.

Remark: The principal components are straightforwardly eigenvectors of the matrix K̃ associated
with the eigenvalues (λk)k.

To establish a link between the Gram matrix and the inertia on the projected data, we define the
covariance operator and the principal axes.
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Definition. The covariance operator of ϕ̃(xi) for i ∈ J1, nK is defined by

Γ =
n∑

i=1

⟨ϕ̃(xi), .⟩Hϕ̃(xi).

Definition. The principal axes are defined by

∀k ∈ J1, rK, ak :=
n∑

j=1

1

λk

ck,jϕ̃(xj).

Proposition 10. The principal axes (ak)k=1,...,r are the eigenfunctions of Γ associated with the
eigenvalues (λk)k=1,...,r. They are orthonormal.

Proof. First, let us show that ak is the eigenfunction of Γ associated with λk.

Γak =
n∑

i=1

⟨ϕ̃(xi), ak⟩Hϕ̃(xi) =
n∑

i=1

ϕ̃(xi)
n∑

j=1

1

λk

ck,j⟨ϕ̃(xi), ϕ̃(xj)⟩H

=
n∑

i=1

ϕ̃(xi)
n∑

j=1

1

λk

ck,jK̃(xi, xj) =
n∑

i=1

ϕ̃(xi)
1

λk

e⊤i K̃ck

= λk

n∑
i=1

1

λk

ck,iϕ̃(xi) = λkak

where ei ∈ Rn denotes the i-th vector of the canonical basis.
On the other hand, since the vectors (ck)k are orthogonal for K̃, and their norm induced by the
matrix K̃ is λ2

k, we have

⟨ak, ak′⟩H =
n∑

i,j=1

1

λk′

1

λk

ck′,ick,j⟨ϕ̃(xi), ϕ̃(xj)⟩H

=
n∑

i,j=1

1

λk′

1

λk

ck′,ick,jK̃(xi, xj) =
1

λk′

1

λk

c⊤k K̃ck′ = δk,k′

which proves the orthonormality of (ak)k.

Proposition 11. The inertia of data projected onto a principal axis ak can be rewritten with K̃
as

IH(Pak(x1), . . . , Pak(xn)) =
n∑

i=1

⟨ϕ̃(xi), ak⟩2H =
1

λ2
k

c⊤k K̃
2ck

We note also that the inertia of the data projected onto ak is equal to the eigenvalue λk associated
to ak.
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Proof. Indeed, we have

n∑
i=1

⟨ϕ̃(xi), ak⟩2H =
n∑

i=1

(
n∑

j=1

1

λk

ck,j⟨ϕ̃(xi), ϕ̃(xj)⟩H

)2

=
1

λ2
k

n∑
i=1

(
n∑

j=1

ck,jK̃(xi, xj)

)2

=
1

λ2
k

(K̃ck)
⊤(K̃ck)

=
1

λ2
k

c⊤k K̃
2ck.

Moreover, since ck is an eigenvector of K̃ and c⊤k K̃ck = λ2
k, we have,

1

λ2
k

c⊤k K̃
2ck =

1

λ2
k

× λkc
⊤
k K̃ck = λk

which completes the proof.

Proposition 12. The coordinates of the projection of ϕ̃(xi) onto the principal axis ak is

⟨ϕ̃(xi), ak⟩H = ck,i

Proof. Indeed, for (i, k) ∈ J1, nK × J1, rK,

⟨ϕ̃(xi), ak⟩H =
1

λk

n∑
j=1

ck,j⟨ϕ̃(xi), ϕ̃(xj)⟩H

=
1

λk

e⊤i K̃ck =
1

λk

λkck,i = ck,i

where ck,i is the i-th term of the k-th principal component.

As in the standard PCA, these coordinates are usefull to obtain a low-dimensional representation of
the sample that emphasizes its underlying structure.

As the observations are described though their similarities thanks to the kernel rather than by nu-
merical values, the principal components are then more difficult to interpret. In particular, Kernel PCA
does not allow the representation of variables, unlike standard PCA. However, as standard PCA, Ker-
nel PCA representation corresponds to the projection onto the subspace of H spanned by orthonormal
functions that maximize the inertia.

26



Lemma 2. We consider the positive eigenvalues λk for k ∈ J1, rK with r ≤ n where r is the last
index where λr ̸= 0.
The vectors {b1, . . . , br} ⊂ Rn solutions of the problem

argmax b⊤k K̃
2bk (1)

under the contraints, for k ∈ J1, rK{
b⊤k K̃bk = 1

b⊤k K̃bk′ = 0 for k′ ∈ J1, k − 1K

are given by, ∀ k ∈ J1, rK, bk =
1√
λk
uk.

Proof. Let ei ∈ Rn denote the i-th vector of the canonical basis and D be the diagonal matrix
D = diag(λ1, . . . , λn). We proceed by induction.
Initialization (k = 1): Assuming λ1 ̸= 0. Let b1 ∈ Rn be a vector such that b⊤1 K̃b1 = 1 and that
maximizes the quantity b⊤K̃2b. Using the spectral decomposition of K̃, we have K̃2 = UD2U⊤ and
then

b⊤1 K̃
2b1 = b⊤1 UD2U⊤b1 = q⊤1 Dq1.

with q1 = D1/2U⊤b1. Since q⊤1 q1 = b⊤1 UD1/2D1/2U⊤b1 = b⊤1 K̃b1 = 1, we have,

q⊤1 Dq1 =
n∑

i=1

λiq
2
1,i ≤ λ1

n∑
i=1

q21,i = λ1.

The quantity b⊤1 K̃
2b1 is maximized if and only if q⊤1 Dq1 is maximized, which is achieved when

q1 = (1 0 . . . 0)⊤. Let us consider the system resulting from the expression q1 = D1/2U⊤b1:{ √
λ1u

⊤
1 b1 = 1√

λku
⊤
k b1 = 0 for k ∈ J2, nK.

Thus, we can deduce, thanks to the orthonormality of the (uk)k that b1 and u1 are co-linear, i.e.
there exists α ∈ R∗ such that b1 = αu1, then√

λ1u
⊤
1 b1 = 1 ⇔

√
λ1αu

⊤
1 u1 = 1 ⇔ α =

1√
λ1

Hence, for the case k = 1, b1 =
1√
λ1
u1 maximizes the quantity b⊤1 K̃

2b1 under the contraint b
⊤
1 K̃b1 =

1.
Induction step (k ≥ 2): The vectors {b1, . . . , bk−1} ⊂ Rn solutions of the problem

argmax b⊤k′K̃
2bk′

under the contraints, for k′ ∈ J1, k − 1K{
b⊤k′K̃bk′ = 1

b⊤k′K̃bi = 0 for i ∈ J1, k′ − 1K
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are given by bk′ :=
1√
λk′

uk′ for k
′ ∈ J1, k − 1K.

We want to show that the vector that satisfies argmax b⊤k K̃
2bk under the contraint b⊤k K̃bk = 1 and

b⊤k K̃bk′ = 0 for k′ ∈ J1, k − 1K is 1√
λk
uk.

We assume λk′ ̸= 0 for k′ ∈ J1, kK. We seek a vector bk such that for any vector bk′ ∈ Ck−1, b
⊤
k K̃bk′ =

0 and b⊤k K̃bk = 1 and that maximizes the quantity b⊤k K̃
2bk. Using the spectral decomposition of K̃

we have,
b⊤k K̃

2bk = b⊤k UD2U⊤bk = q⊤k Dqk

where qk := D1/2U⊤bk. Moreover,

∀k′ ∈ J1, k − 1K, qk,k′ = q⊤k ek′ =
1√
λk′

q⊤k D
1/2ek′

=
1√
λk′

b⊤k UD1/2 D1/2U⊤Uek′ =
1√
λk′

b⊤k K̃Uek′ = b⊤k K̃bk′ = 0

which implies q⊤k Dqk =
∑n

i=1 λiq
2
k,i =

∑n
i=k λiq

2
k,i. Since q⊤k qk = b⊤k K̃bk = 1, we have the inequality

b⊤k K̃
2bk = q⊤k Dqk =

n∑
i=k

λiq
2
k,i ≤

n∑
i=k

λkq
2
k,i = λk.

Thus, the maximum is reached when q⊤k Dqk = λk, which is achieved when qk = ek. Since qk :=
D1/2U⊤bk we find the expression of bk by solving the system{ √

λku
⊤
k bk = 1√

λju
⊤
j bk = 0 for j ∈ J1, nK\{k}.

In other words, bk is co-linear to the vector uk since the vectors (uk)k are orthonormal. i.e. there
exists a scalar α such that bk = αuk then√

λku
⊤
k bk = 1 ⇔

√
λkαu

⊤
k uk = 1 ⇔ α =

1√
λk

Hence, the vector bk =
1√
λk
uk maximizes the quantity argmax b⊤k K̃

2bk under the contraint b⊤k K̃bk =

1 and b⊤k K̃bk′ = 0 for k′ ∈ J1, k − 1K.
This completes the proof.

Theorem 4. We consider the positive eigenvalues λk for k ∈ J1, rK with r ≤ n where r is the last
index where λr ̸= 0. The functions {a1, . . . , ar} are the solutions of the problem{

argmax IH(Pa1(x1), . . . , Pa1(xn))
argmaxak⊥(a1,...,ak−1)

IH(Pak(x1), . . . , Pak(xn)), if k ∈ J2, rK (2)

under the contraints ∥ak∥H = 1.
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Proof. We seek for orthonormal functions fk of H, for k ∈ J1, rK, that are solution of the Problem
(2).
Let fk ∈ H, for k ∈ J1, rK, be functions with norm 1, then we have

IH(Pfk(x1), . . . , Pfk(xn)) =
n∑

i=1

⟨ϕ̃(xi), fk⟩2H.

Let us show that minimizing the reconstruction error
∑r

k=1

∑n
i=1 ∥ϕ̃(xi)−Pfk(xi)∥2 is equivalent to

maximizing
∑r

k=1 IH(Pfk(x1), . . . , Pfk(xn)). We have

n∑
i=1

∥ϕ̃(xi)− Pfk(xi)∥2 =
n∑

i=1

∥ϕ̃(xi)− ⟨ϕ̃(xi), fk⟩H∥2

=
n∑

i=1

(∥ϕ̃(xi)∥2 − 2⟨ϕ(xi), fk⟩2H + (⟨ϕ̃(xi), fk⟩H∥fk∥H)2)

=
n∑

i=1

(∥ϕ̃(xi)∥2 − ⟨ϕ(xi), fk⟩2H)

= IH(x1, . . . , xn)− IH(Pfk(x1), . . . , Pfk(xn)).

Then, since the global inertia is a constant, we have

argmin
r∑

k=1

n∑
i=1

∥ϕ̃(xi)− Pfk(xi)∥2 = argmin
r∑

k=1

IH(x1, . . . xn)− IH(Pfk(x1), . . . , Pfk(xn))

= −argmin
r∑

k=1

IH(Pfk(x1), . . . , Pfk(xn))

= argmax
r∑

k=1

IH(Pfk(x1), . . . , Pfk(xn)).

We will now complete the proof by induction.
Initialization (k = 1): Let us prove that the function f1 that maximizes IH(Pf1(x1), . . . , Pf1(xn))
under the constraint ∥f1∥H = 1 is a1. Since the maximization of the projected inertia is equivalent
to minimizing

∑n
i=1 ∥ϕ̃(xi)−Pf1(xi)∥2, the Representer Theorem 3 shows that f1 can be written as

f1 =
∑n

i=1 biϕ̃(xi) for some bi ∈ R. Therefore, for b = (b1, . . . , bn) ∈ Rn,

∥f1∥2H = b⊤K̃b

which leads to the constraint b⊤K̃b = 1. In addition,

∀ i = 1, . . . , n, Pf1(xi) =
n∑

i′=1

bi′K̃(xi, xi′)

which leads to show that

IH(Pf1(x1), . . . , Pf1(xn)) =
n∑

i=1

(
n∑

i′=1

bi′K(xi, xi′)

)2

= b⊤K̃2b.
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Hence, by Lemma 2, f1 =
∑n

i=1
1√
λ1
u1iϕ̃(xi) =

∑n
i=1

1
λ1
c1iϕ̃(xi) = a1, which concludes the case

k = 1.
Induction step (k ≥ 2): Suppose that a1, . . . , ak−1 are the orthogonal functions that, for all

k′ ≤ k− 1 maximizes the projected inertia
∑k′

l=1 IH(Pfl(x1), . . . , Pfl(xn)) under the constraints that
∥fk′∥H = 1 and ⟨f ′

k, fi⟩H = 0 for all i ≤ k′ − 1.
Let us prove that ak is the function, orthogonal to all (ak′)k′≤k−1 and with norm 1, that maximizes∑k−1

l=1 IH(Pal(x1), . . . , Pal(xn))+IH(Pfk(x1), . . . , Pfk(xn)). This question is equivalent to maximizing
only IH(Pfk(x1), . . . , Pfk(xn)) under the constraints ∥fk∥H = 1 and ⟨fk, ak′⟩H = 0 for all k′ ≤ k− 1.
Using the fact that maximizing IH(Pfk(x1), . . . , Pfk(xn)) is equivalent to minimizing

∑n
i=1 ∥ϕ̃(xi)−

Pfk(xi)∥2, we again show that fk can be written as fk =
∑n

i=1 biϕ̃(xi) for some bi ∈ R. With the
same arguments that for the case k = 1, we show that b maximizes

b⊤K̃2b

under the constraint that b⊤K̃b = 1 and the additional constraints

∀ k′ = 1, . . . , k − 1,

〈
n∑

i=1

biϕ̃(xi),
n∑

i=1

1

λk′
ck′iϕ̃(xi)

〉
H

= 0 ⇔ b⊤K̃ck′ = 0.

Again using Lemma 2, we conclude that fk =
∑n

i=1
1√
λk
ukiϕ̃(xi) = ak, which concludes the proof.

Remark: In order to compare kernel PCA to standard PCA, we consider the kernel defined by
K(x, y) = x⊤y. Thus K̃ = X ′X ′⊤, where X ′ = 1√

n
X̄. Since the principal components are eigenvectors

of 1
n
X̄X̄⊤ and ck is an eigenvector of K̃, we identify the vectors ck to the principal components of the

standard PCA.

4 Application

As mentioned earlier, performing kernel PCA on numerical data can potentially lead to better separa-
bility of the data. In standard PCA the graph representing the individuals on the first two axes shows
a good separability of the individuals.

Figure 5: Gaussian Kernel PCA
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Similarly, when applying Gaussian kernel PCA, we can expect to see a similar interpretation, where
the individuals are well-separated in the transformed feature space defined by the Gaussian kernel.
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Conclusion
To conclude, my internship within the INRAE project “PeerSim” has provided a theoretical under-
standing of kernel methods for exploratory analysis. While the focus was primarily on theory, practical
aspects were also incorporated to complement the understanding of these methods.

The theoretical part of the internship allowed me to discover and deepen the PCA and its extension
on RKHS, kernel PCA. In the context of the project, this extension would enable the comparison of
gene networks.

By exploring the theory behind PCA, I have gained mathematical understanding of the concept of
“optimal dimension reduction” and how to effectively reduce the dimension of a space of interest while
preserving “essential” information of a dataset. This understanding allows meaningful exploratory
analysis of multivariate data by maximizing the variability of the projection. This is achieved through
the eigendecomposition of the variance-covariance matrix.

The extension kernel PCA expanded the capabilities of PCA, allowing for the comparison and analysis
of non-numerical data, such as gene networks. Thus, by exploring the theory behind kernel PCA, I
gained an understanding of how to compare graphs using similarity matrix. Such matrix is defined by
kernels which measure the similarities between each graphs. Thus, to understand how to adapt PCA
to RKHS, I focused on the theoretical aspects of kernels. First the theoretical part on RKHS shows
that defining a kernel directly induces an implicit RKHS and an mapping function. Building on the
theoretical knowledge of kernels and the tools of PCA, we demonstrated how to adapt PCA to RKHS
with Kernel PCA. Specifically, we explored the dual version of PCA using the similarity matrix. Through
this similarity matrix, the induced mapping function and the induced Hilbert space, we determined the
objects in kernel PCA which correspond to objects in PCA and we obtained the coordinates of the
projected individuals. These coordinates are solely determined by the principal components which are
the eigenvectors of the Gram matrix. Thus, there is no need to know the explicit form of the Hilbert
space and mapping function to achieve dimension reduction. Instead, focusing on studying the similarity
matrix and its eigendecomposition allows for graph comparison.

Until now, our interest has been focused on the graph comparison using an arbitrary kernel. How-
ever, a natural question arises: what would be a good kernel for determining similarities between gene
networks? Additionally, as my internship initially aimed to explore the impact of the number of repli-
cates on the biological interpretation of statistical results, it would be necessary to construct graphs
capturing gene relationships from gene expression matrices with varying numbers of replicates in order
to compare and analyze them. This is left for future work in the project.
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